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Reciprocating pipe flows as a model of high-frequency ventilation
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Abstract

High-frequency ventilation is a strategy primarily used to pro-
vide oxygen to neonatal patients in intensive care. Here, a sim-
ple model of the reciprocating flow in a straight pipe with a
free end exiting into a large reservoir is examined to investigate
some of the fluid mechanics present during high-frequency ven-
tilation. The resulting recirculating mean flow is quantified in
terms of the amount of mean recirculating flux and the distance
from the free end to which this recirculation penetrates.

Introduction

High-frequency ventilation (HFV) is a method of providing
oxygen to patients in intensive care. In particular, it is used
in neonatal intensive care units (NICU) for critically ill babies.
During HFV, the patient is completely sedated and intubated,
with gases supplied and removed via an endotracheal tube (a
tube inserted via the throat into the trachea). A purported ad-
vantage of HFV over traditional ventilation is its protection of
damaged or otherwise-delicate lungs and airways. This protec-
tive capacity comes from the fact that HFV uses fast, small in-
flations - usual values are frequencies around 10Hz and volumes
per inflation from 1ml to 10ml [3, 2]. These small volumes of
inflation mean that peak pressures in the airway and lungs are
minimized, hence reducing the risk of lung damage via over-
distension.

However, these small volumes of inhalation - which at their
greatest are < 10% of the “dead space” volume of the airway
- raise interesting questions from a fluid mechanics perspective.
Gas transport (oxygen down, carbon dioxide up) is not achieved
by bulk advection, or emptying and filling the lungs, but by
other more subtle mechanisms. Some of these potential mech-
anisms, as outlined by Slutsky & Brown [7] and Standiford [8]
include turbulent convection in the upper airway, Taylor disper-
sion [9, 1], and nonlinear streaming.

Further fundamental understanding of these mechanisms can
help address outstanding clinical problems such as

• finding optimal settings for a specific patient

• extending the success of HFV and its lung protective ca-
pacity to adults [6].

Nonlinear mean streaming (the focus of this paper) occurs in
reciprocating flow such as those in the airway due to presence
of spatial gradients in the flow. These spatial gradients mean
that even though the flow in the airway has a zero net mass flux
(the same amount of flow goes in and out over one inflation
cycle) the mean flow at a particular location is non-zero. For
both of these facts to be true, a mean recirculating flow needs to
occur, and it is this mean recirculation that can transport gases
up and down the airway.

The human airway is essentially a set of connected bifurcating
pipes. Here, a very simple model flow is examined, the recip-
rocating flow in a straight pipe with a free end exiting into a
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Figure 1: A schematic of the basic problem setup investigated.
A time-dependent boundary condition is applied at the non-free
end, and the free end acts as an exit/entry to/from a large reser-
voir.

large reservoir. Flow separation and subsequent vortex produc-
tion lead to large local gradients and therefore mean streaming.
The recirculating flux, and the distance from the free end down
the pipe which this recirculating flow extends is quantified, to
investigate if optimum quantities can be found and related to the
underlying flow features.

Methodology

Axisymmetric simulations of the sinusoidally reciprocating
flow in a horizontal straight pipe with a free end exiting into
a reservoir were conducted using a highly-validated spectral-
element code [10, 5] solving the incompressible Navier–Stokes
equations. A schematic of the basic problem setup is shown
in figure 1. At the non-free end, an oscillatory boundary con-
dition of a set frequency f and peak cross-sectional-mean ve-
locity U was imposed such that the flow matched the analytic
solution for the reciprocating flow in an infinitely long pipe
[11]. At the pipe walls and lateral reservoir boundaries, a no-
slip condition was applied. At the exit/entry to the reservoir,
a time-dependent Poiseuille profile was imposed, the instanta-
neous amplitude of which was set so that the flow rate in/out of
the reservoir matched the flow rate out/in of the non-free end.
At all boundaries, the normal pressure gradient was set to zero.

Ignoring the length of the pipe (assuming it is long enough that
flow returns to the fully-developed solution at some distance
from the free end) the flow is a function of two dimension-
less parameters, here defined as the maximum Reynolds number
Remax =UD/ν (essentially a dimensionless amplitude), and the
oscillatory Reynolds number α′ = 2π f D2/ν (essentially a di-
mensionless frequency), where U is the amplitude of the cross-
sectional-mean velocity in the pipe, D is the pipe diameter, ν is
the fluid kinematic viscosity, and f is the imposed frequency.

Note the oscillatory Reynolds number can be interpreted as a
ratio of lengths. The Stokes layer thickness δ =

√
2ν/(2π f )

is the thickness of the oscillatory boundary layer in the pipe,
and so α′ can be defined as α′ = 8(Λ)2, where Λ = D/(2δ) is
the traditional Stokes parameter, or the ratio of the pipe radius
to the Stokes layer thickness. Similarly, if δ is taken as the



length scale, an alternative Reynolds number Reδ = Uδ/ν can
be defined. Both of these alternative parameters are used to
analyze results in the following sections.

Results

Of primary interest is the amount of flow that is recirculated,
and how far down the pipe this recirculation penetrates. The
amount of flow recirculated is quantified by integrating the
mean velocity field over the portion of the plane covering the
end of the pipe through which the flux is positive,

q =
∫

u · n̂H(u · n̂)dA (1)

where H is the Heaviside function. This mean flow rate is
then normalized as Q∗ = 4q/(πUD2) (divided by the maximum
flowrate).

The length of this recirculating flow is quantified by the recircu-
lation length L, defined here as the distance from the free end of
the pipe at which the mean axial velocity on the pipe centreline
does not vary with further increases in distance. In practice, this
is taken as the point at which the absolute value of ∂ur0/∂x falls
below some small threshold, here taken as 0.0005.

Figure 2(a) shows the normalised recirculation length L/D as a
function of Remax, where D has been taken as the relevant length
scale. Results are shown for nine values of Λ. The figure shows
that while Λ < 2.5, the normalized length L/D is essentially in-
dependent of Λ and increases linearly with Remax. Figure 2(b)
shows the same data, but here δ has been taken as the relevant
length scale, plotting the normalised recirculation length L/δ as
a function of Reδ. Here it is clear that for Λ > 2.5, the normal-
ized length L/δ is independent of Λ and increases linearly with
Reδ. These results suggest two primary flow regimes as a func-
tion of the Stokes parameter Λ: a low Λ regime, where the rel-
evant length scale is the pipe diameter D; and a high Λ regime,
where the relevant length scale is the Stokes layer thickness δ.

This hypothesis is further refined by plotting the normalized
flow rate Q∗ as a function of Remax, as presented in figure 2(c).
It is shown that Q∗ is almost independent of Λ for Λ < 2.5,
with the results for all the amplitudes tested collapsing to a
single curve with a local maxima of Q∗ ' 0.06 occurring at
Remax ' 300. For higher values of Λ > 6, Q∗ appears to col-
lapse to a single weak linear function of Remax. However, there
is also an intermediate Λ regime between these two extremes,
where Q∗ is clearly a function of both Λ and Remax. In this
intermediate regime, the maximum flow rate decreases with in-
creasing Λ.

Figure 3 shows an example of the mean flow generated, here for
Remax = 800, Λ = 2.24. The mean vorticity in one half plane
inside the pipe is shown, clearly illustrating the recirculating
nature of the flow by thte change in sign of vorticity as the pipe
is traversed in the radial direction. The mean axial velocity on
the pipe centreline is shown, showing that at a certain distance
from the free end the mean flow returns to zero (at a distance
x ' 10 in the figure). Also shown is the mean axial velocity
profile across the very end of the pipe. The regions used to
calculate the mean recirculating flux are shaded.

The idea that the collapse of the data in the low and high Λ

regime is related to a change in the dominant length scale is fur-
ther investigated in figure 4. Here, instantaneous snapshots of
the axial velocity profile across the end of the pipe are plotted
at 8 phases throughout the oscillation cycle, from a high Λ ex-
ample (Remax = 2400, Λ = 7.07), and a low Λ example close to
the optimum for flow rate (Remax = 240, Λ = 2.24).

The plots show the change in relevant length scale. In the high
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Figure 2: (a) Recirculation length L normalized by pipe diam-
eter D as a function of Remax. (b) The same data as (a), but L
is normalized by the Stokes layer thickness δ. (c) Normalized
flow rate as a function of Remax. The dashed line marks the
value of Remax of the apparent optimum for flow rate. Colours
of points represent values of Λ: •, Λ = 1.12; •, Λ = 1.58; •,
Λ = 1.94; •, Λ = 2.24; •, Λ = 2.50; •, Λ = 3.54; •, Λ = 5.00;
•, Λ = 6.12; •, Λ = 7.07
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Figure 3: Example measurements of the mean flow for Remax = 800, Λ = 2.24. (a) Contours of mean normalised vorticity Ω = ωD/U
(where ω is the vorticity with vector out of the plane of the page) in the upper half of the centre plane. Blue/red contours represent
positive/negative vorticity. Contour levels are between Ω = ±1. (b) Mean axial velocity on the centre line of the pipe, near the free
end. Note that for the length scale x = 0 is at the free end of the pipe, and x is made non-dimensional with D. (c) The mean velocity
profile across the end of the pipe, with the shaded region showing the portions used to find the mean recirculating flux.
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Figure 4: Snapshots of axial velocity profiles, taken at the free end of the pipe, at different phases of oscillation over one period T for
(a) Remax = 2400, Λ = 7.07 as an example of the high Λ regime and (b) Remax = 240, Λ = 2.24 as an example of the low Λ regime.
In the high Λ regime, all the profiles are essentially flat for r/D < 0.12 (marked with the fine dashed line) indicating little interaction
between the Stokes layers on each side. In the low Λ regime, some profiles are essentially parabolic indicating each side is interacting.
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Figure 5: Values of Remax and Λ for each generation from 1 to
15 of an example infant airway, using the scaling of Grotberg
[2]. Each point represents an airway generation. Practically all
generations are approaching the low Λ regime, and generations
8 and 9 are close to the optimum value of Remax for maximizing
flux (marked with the dashed line) according to the data plotted
in figure 2(c).

Λ example, the profiles exiting and entering the pipe are flat
through the entire period in the middle of the pipe, for a radius
r < 0.12. However, in the low Λ regime, this flat section is not
observed, highlighting the interaction of the Stokes layers, and
vortex structures that from from these layers, on each side of
the pipe.

A change of behaviour dependent on Λ is not unprecedented.
Hino et al [4] showed that the onset of turbulence in the re-
ciprocating flow in a very long pipe, where end effects were
eliminated, was a function only of Reδ for Λ > 2. However,
the fact that the more complicated flow through the open-ended
pipe still follows a similar pattern is novel.

Figure 5 attempts to address the applicability of these results to
the application of HFV. The airway is essentially a set of pipes
connected via bifurcations. A bifurcation here is the point at
which a large pipe splits into two smaller pipes. The structure
is almost self-similar, at least down to generation 15 (where the
trachea is the first generation). The ratio of the lower to up-
per pipe diameters at a given bifurcation is d2/d1 = 0.79, and
each pipe section has a length of around three diameters [2]. In
a paper assessing different ventilators, Harcourt et al [3] used
typical clinic parameters of a volume per inhalation of 6ml, a
frequency of 10Hz and an endotracheal tube of internal diam-
eter 3.5mm. Using these numbers (and assuming the internal
diameter of the endotracheal tube is the diameter of the first air-
way generation) allows Remax and Λ to be calculated at each
generation, and it is these parameters plotted in figure 5.

This plot illustrates two primary features of this flow: first, all
generations have reasonably low values of Λ, with even the
highest value obtained in the trachea being < 2.5. This indicates
that all generations are likely to operate in the low Λ regime.
Second, that the middle generations around 8 and 9 have pa-
rameters close to the optimum for the low Λ regime identified
in figure 2. This indicates that understanding mean streaming
that forms in these flows is likely to aid in inderstanding the
overall gas transport through these middle generations.

Conclusions

The reciprocating flow in a straight pipe with a free end exit-
ing in a large reservoir has been investigated. This flow has
been used as a very basic model of the fluid mechanics, in par-

ticular the nonlinear mean streaming, that occurs during high-
frequency ventilation. It has been shown that the flow can be
classified into two basic regimes: a low Λ regime where the flow
is essentially independent of Λ and the recirculating flux has a
local maxima at a value of Remax ' 300, and a high Λ regime
where again the flow is independent of Λ and the ricirculating
flux is a weak linear function of Remax. A simple considera-
tion of the airway geometry has shown that most of the airway
should operate in the low Λ regime, and that the middle gen-
erations operate around the optimum conditions for maximum
recirculating flux.
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